Loading…
or to bookmark your favorites and sync them to your phone or calendar.
Type: General Wildlife clear filter
arrow_back View All Dates
Tuesday, January 21
 

10:20am CST

Wildlife Track: Influence of Raccoon (Procyon lotor) Abundance on Prevalence of Raccoon Roundworm (Baylisascaris procyonis) in Northern Illinois
Tuesday January 21, 2025 10:20am - 10:40am CST
AUTHORS: Ashley G. McDonald, Southern Illinois University; Jennifer R. Schultze, Southern Illinois University; Clayton K. Nielsen, Southern Illinois University; F. Agustin Jimenez, Southern Illinois University

ABSTRACT: Zoonoses are attributed to approximately 75% of emerging infectious diseases. Contraction of zoonotic infections is linked to urbanization, as land development increases the probability of human interaction with wildlife. Omnivorous animals such as raccoons thrive in urban settings due to the abundance of anthropogenic resources such as food and shelter. Racoons are the definitive host of zoonotic pathogens, including the heteroxenous raccoon roundworm (Baylisascaris procyonis); raccoon synanthropic habits bring these pathogens near human dwellings. The goal of this study is to assess the influence of raccoon abundance on the prevalence of raccoon roundworm in 5 study areas in northern Illinois representing a rural-urban gradient. Raccoons (n=287) were captured and removed from sites by collaborators during April-June 2022-2024. Upon necropsy, intestinal tracts were examined to determine raccoon roundworm prevalence. Capture per unit effort (CPUE), a measure of wildlife population abundance, was calculated as the number of raccoons captured per 100 nights of capture effort at each site. A logistic regression was used to investigate the relationship between raccoon abundance and raccoon roundworm prevalence. Raccoon roundworm prevalence decreased with increased raccoon abundance (X2=4.37, P=0.036). Counterintuitively, our findings suggest that disease risk decreases with increasing raccoon abundance, which implies that population reduction of raccoons in areas of high abundance might be an ineffective tool to reduce the risk of roundworm infection to the human population. Land-use can also impact parasite prevalence, as the availability of anthropogenic resources can influence raccoon population dynamics. Future analyses examining the relationship between land-use, raccoon roundworm prevalence, and raccoon abundance might provide a better understanding of the influence of population demographics on raccoon roundworm prevalence.
Speakers
AM

Ashley McDonald

PhD Candidate/Research Assistant, Southern Illinois University
Tuesday January 21, 2025 10:20am - 10:40am CST
Sterling 9 (2nd Floor )

10:20am CST

Wildlife Track: Response of White-tailed Deer Movement to Exurban Mountain Bike Trails
Tuesday January 21, 2025 10:20am - 10:40am CST
AUTHORS:  Tadao Kishimoto, Southern Illinois University; Michael Egan, Southern Illinois University; Michael Eichholz, Southern Illinois University; Peter Schlichting, Illinois Department of Natural Resources; Daniel Skinner, Illinois Department of Natural Resources; Guillaume Bastille-Rousseau, Southern Illinois University

ABSTRACT:  Human activity can impact wildlife behavior by altering habitat conditions, increasing stress or predation risk, and disrupting natural patterns of movement, foraging, and reproduction. We investigated the impact of non-consumptive recreational activities, specifically mountain biking, on white-tailed deer (Odocoileus virginianus) space-use in an exurban forest setting in southern Illinois. Using GPS collar data from 37 individual deer collected before and after trail installation, we assessed whether newly introduced mountain bike trails altered key movement metrics: home range size, core area size, and speed.
Home range and core area sizes were estimated using autocorrelated kernel density estimation (AKDE), and scale-insensitive speed estimates were calculated using a continuous-time speed and distance (CTSD) method. Home range size, core area size, and speed estimates were fit to linear mixed-effects models with sex as a covariate and individuals as random intercepts. We found no significant change in home range or core area size following trail installation. We found significant changes in speed for both males and females after trail installation, however, changes were independent of their overlap status with the trails, suggesting the changes were not due to trail installation.
These findings contrast with existing literature suggesting human disturbance typically affects wildlife movement. The low frequency of recreational activity and partial habituation to humans may explain the lack of significant behavioral change. This study demonstrates the value of long-term monitoring and underscores the need for further research in areas with heavier recreational use to inform management practices that mitigate the impact of outdoor recreation on wildlife populations.
Speakers
TK

Tadao Kishimoto

Researcher 1, SIUC - Cooperative Wildlife Research Lab
Tuesday January 21, 2025 10:20am - 10:40am CST
Regency F (2nd Floor)

10:40am CST

Wildlife Track: Temporal Dynamics and Potential Niche Separation Amongst Carnivores: A Decadal Analysis
Tuesday January 21, 2025 10:40am - 11:00am CST
AUTHORS:  Max R. Larreur, Southern Illinois University; Clayton K. Nielsen, Southern Illinois University; Damon B. Lesmeister, USDA Forest Service, Oregon State University; Guillaume Bastille-Rousseau, Southern Illinois University

ABSTRACT:  Broad ecological changes can alter species' temporal activity, thereby impacting interspecific interactions. Temporal niche separation promotes coexistence, causing species to adjust activity patterns to avoid direct competition. Although studying carnivore species offers a unique perspective into the stability of their temporal activity and niche, few analyses have been conducted over long-term periods in areas experiencing conspecific population changes. We quantified species-specific and pairwise temporal activity patterns, using kernel density analysis overlap, for 6 native (i.e., bobcat, coyote, gray fox, red fox, striped skunk, and raccoon) and 2 non-native (i.e., domestic dog and cat) carnivore species along with their diel niche between decades. We used camera trap data collected January – April 2008 – 2010 (n = 1,118 camera locations) and January – April 2022 – 2024 (n = 1,325 camera locations) across 16,058-km2 of southern Illinois to identify potential changes in temporal overlap or niche separation between decades. Species-specific activity overlap was high (range = 0.81 - 0.95) between decades, however, activity patterns of striped skunk, raccoon, and domestic dogs were different. Both past and contemporary pairwise comparisons had 6 activity patterns indicating potential avoidance between larger-bodied and smaller-bodied guild members, and 7 activity patterns indicating potential avoidance between native and non-native carnivore species. However, 7 novel pairwise activity patterns have experienced significant changes from the past, 3 between natives and 4 between natives and non-natives. The diel niche of bobcat, gray fox, red fox, and striped skunk indicated minor changes in their diel activity potentially in response to larger-bodied coyote and domestic dog spatial presence throughout the study area. Larger-bodied carnivore species may be altering activity patterns of smaller-bodied members, thereby decreasing competition and negative interspecific interactions. Our results emphasize the importance of considering alterations to activity overlap and potential niche separation amongst carnivores with high resource overlap and propensity for interspecific interactions.
Speakers
ML

Max Larreur

PhD Student, Southern Illinois University
Tuesday January 21, 2025 10:40am - 11:00am CST
Regency F (2nd Floor)

10:40am CST

Wildlife Track: The power of bats: evaluating protected bats during energy project planning
Tuesday January 21, 2025 10:40am - 11:00am CST
AUTHORS: Brittany R. Schweiger, HDR Engineering, Inc

ABSTRACT: Four of the seven federally listed bat species in the U.S. occur in the north-central region, and two of the remaining seven are being evaluated for listing under the Endangered Species Act. Regulations at the state and federal level often require consultation to assess the impacts to these species before development occurs. In the energy sector, development is rapidly occurring—from power line upgrades to utility-scale solar. In the U.S., there are over 15,000 miles of power lines throughout the country and, in 2023, solar accounted for 55 percent of new electricity-generation capacity. The electric grid infrastructure is aging and, as the population grows and the demand for reliable, clean energy increases, upgrades to transmission systems and additions of utility-scale solar generation are needed. While energy is essential to society, it can have impacts to protected bat species, including the removal of habitat. Therefore, energy projects must understand how bats can influence projects and how to evaluate impacts to bats as a result of construction activities accurately and appropriately during the planning phase. This presentation will highlight species threats, current regulations, the latest species survey guidelines, issues encountered, conservation measures, approaches toward impact minimization, and lessons learned with respect to solar and energy development in many areas of the north-central region. This presentation will be valuable for developers, consultants, regulators, and those interested in the intersection of energy projects and protected species.
Speakers
BS

Brittany Schweiger

Environmental Scientist, HDR Engineering, Inc.
Tuesday January 21, 2025 10:40am - 11:00am CST
Sterling 9 (2nd Floor )

11:00am CST

Wildlife Track: Bobcat Survival Across North America: A Meta-Analysis Approach
Tuesday January 21, 2025 11:00am - 11:20am CST
AUTHORS:  Katherine M. Buckman, Ellen M. Audia, Brent S. Pease, Guillaume Bastille-Rousseau, and Clayton K. Nielsen

Southern Illinois University Carbondale

ABSTRACT:  Bobcats (Lynx rufus) are a focal species for carnivore management and research. Although bobcat survival has been studied extensively throughout much of their North-American range, it can be difficult to identify the broader conclusions of such studies based on study-specific factors, such as sample size, harvest status, and study length. We conducted a meta-analysis to estimate mean bobcat survival across the U.S. to document trends, identify knowledge gaps, and inform future study designs. We identified 18 studies across 15 U.S. states conducted during 1985–2023 that reported a single estimate of annual bobcat survival (i.e., effect size) and a corresponding variance (i.e., weight). We assigned an “exploitation level” to each study based on whether the study area and/or adjacent lands were open to bobcat harvest (i.e., zero = no harvest permitted within or outside the study area; indirect = no harvest permitted within the study area but permitted outside the study area; direct = harvest permitted within and outside the study area). Bobcat survival estimates ranged from 0.19–0.93, with a mean annual survival of 0.75 (95% CI = 0.69–0.81). Heterogeneity in reported survival rates was not significantly different across years (Q = 3.29, P = 0.06), however survival rates appeared to increase slightly between 1985–2000 and reported estimates after 2001 were >0.68 (n = 9 studies). The mean number of days monitoring individual survival (range = 188–870 days, n = 12 studies), and the relative exploitation level accounted for 99.98% of heterogeneity in survival rates across studies (Q = 27.13, P
Speakers
KB

Katherine Buckman

Graduate Student, Southern Illinois University Carbondale
Tuesday January 21, 2025 11:00am - 11:20am CST
Regency F (2nd Floor)

11:00am CST

Wildlife Track: Widespread pesticide exposure and plant damage in natural areas in Illinois
Tuesday January 21, 2025 11:00am - 11:20am CST
AUTHORS: Thomas J. Benson, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign; Tara A. Beveroth, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign; Claire A. Johnson, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign; Edward P. Price, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign; Timothy A. Rye, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign; Emily J. Lain, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign; Brian M. Charles, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign; and David N. Zaya, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign

ABSTRACT: Starting in the second half of the 20th century, agricultural intensification increasingly involved the use of chemicals for pest control. The development of numerous synthetic pesticides, including herbicides, insecticides, and fungicides, led to widespread use and, in some cases, recognition of widespread non-target effects on organisms. Unfortunately, our understanding of the potential effects of these pesticides on non-target organisms generally lags behind their widespread adoption, as does our understanding of the extent to which these chemicals travel beyond the agricultural fields in which they’re applied and end up in natural areas. In 2023, we set out to examine the extent of plant damage consistent with non-target herbicide exposure as well as to quantify concentrations of pesticides from plant tissue and soil from natural areas throughout Illinois. We sampled >180 sites in Illinois 2 times during the growing season of 2023 and found at least moderate damage to plants at almost all sites, with >50% of sites having severe damage and oak species most frequently affected. We found pesticides in nearly all natural areas, with 40 different chemicals detected, primarily from plant tissues. Herbicides were found in the greatest concentrations, with Atrazine and 2,4-D most common, and Dicamba relatively rare. Later in the season, fungicides and insecticides were more commonly detected. The amount of row-crop agriculture in the surrounding kilometer predicted leaf-tissue concentrations of pesticides and severity of plant injury. The longer-term effects of this exposure and plant injury are unknown, as are the effects on insects and insectivorous birds. Given that oaks were the most frequently observed with plant damage, and the disproportionate importance of this group for caterpillars and the migrating and breeding birds that consume them, more work is needed to explore these implications.
Speakers
TB

T.J. Benson

Principal Research Scientist, Illinois Natural History Survey, University of Illinois Urbana-Champaign
Tuesday January 21, 2025 11:00am - 11:20am CST
Sterling 9 (2nd Floor )

11:20am CST

Wildlife Track: Impact of invasive Burmese python on the abundance of two endemic endangered species in the Florida Keys
Tuesday January 21, 2025 11:20am - 11:40am CST
AUTHORS:  Shauna S. Sayers, School of Forestry and Horticulture, Southern Illinois University; Brent S. Pease, School of Forestry and Horticulture, Southern Illinois University; Michael V. Cove, North Carolina Museum of Natural Sciences.

ABSTRACT:  Non-native invasive species are a leading contributor to global biodiversity loss. The Burmese python (Python bivittatus), a large constrictor snake native to Southeast Asia, is one of Florida's most notable exotic predators. Although python’s prey vary in size and species, rodents are the most common group detected in their digestive tracts. The Key Largo woodrat (Neotoma floridana smalli) and Key Largo cotton mouse (Peromyscus gossypinus allapaticola) are two endangered rodent subspecies, endemic to Key Largo, Florida, that are susceptible to the threat of increasing python prevalence. We examined the impact of Burmese pythons on these two subspecies by conducting spatial capture-recapture surveys at 23 grids and deploying remote cameras at 629 supplemental woodrat nests across North Key Largo from January to August 2024. Trapping effort concluded with a total of 4,309 trapnights, capturing 37 woodrats (17 individuals) and 268 cotton mice (152 individuals). The effects of python presence on woodrat and cotton mouse populations were examined by comparing current rodent abundance estimates to those estimated during the python’s apparent establishment and increasing prevalence. Our results indicate the abundance of woodrats and cotton mice has declined coinciding with the increasing detections of pythons, with more drastic declines in the larger woodrats. Preliminary SECR estimates show a decrease in woodrat density from 0.48 individuals per hectare in 2017 to 0.08 individuals per hectare in 2024. Furthermore, our analysis demonstrated that areas with higher python activity exhibited altered habitat use patterns by woodrats such as decreased nest use and stick-nest building. These results suggest that as pythons increase their population size and distribution, the already geographically limited woodrats and cotton mice may continue to experience population declines and shifting habitat use.
Speakers
SS

Shauna Sayers

Master's Student, Southern Illinois University Carbondale
Tuesday January 21, 2025 11:20am - 11:40am CST
Sterling 9 (2nd Floor )

11:20am CST

Wildlife Track: Rodents in an Urban Forest: Exploring Small Mammal Ecology and the Impact of Restoration 
Tuesday January 21, 2025 11:20am - 11:40am CST
AUTHORS:  Samantha Dennis, Stephen Blake, Saint Louis University; Stella Uiterwaal, Elizabeth Carlen, Washington University; Zachary Reyes, Saint Louis University, Sabrina Hardy, Purdue University

ABSTRACT:  Urban expansion in the Midwest poses significant challenges to wildlife habitats vital to supporting biodiversity. As cities grow, green spaces within urban environments can become important habitat refugia for numerous species. Urban parks often provide mosaics of semi-natural habitats in a matrix of high human use areas within which some native wildlife species may persist. In the midwestern US, the conservation value of urban parks for small mammal communities is poorly understood. We studied the abundance and diversity of small rodent populations in iconic Forest Park, St. Louis, in which habitat restoration has been underway for a decade. We hypothesized that small mammal abundance and diversity would be correlated with restoration effort. Over three months in summer 2024, we used live trapping methods to capture rodents and survey tree and understory vegetation across the restoration gradient of the park. We identified captured mammals to species and sex, collected morphometric data and collected hair and scat samples to characterize diets through stable isotope analysis. We completed 1,646 traps nights capturing 94 individuals. Rodent diversity was extremely low; ninety of the individuals captured were Peromyscus spp. (Deer mice), two Sciurus carolinensis (Eastern gray squirrel), one Tamias striatus (Eastern chipmunk), and 1 Didelphis virginiana (Virginia opossum). Our results showed that older restoration sections with the highest plant density and diversity supported a greater abundance of rodents than younger restoration sections with correspondingly lower plant density and diversity. While restoration duration was correlated with the abundance of small native rodents, it had no effect on rodent diversity. We speculate this may be due to dispersal limitation through the cityscape. Effective restoration management is essential to ensure that the wildlife inhabiting these areas is not only surviving but thriving, providing insights for enhancing biodiversity a long-term sustainability in urban green spaces.
Speakers
SD

Samantha Dennis

Graduate Student/Reseacher, Saint Louis University
Tuesday January 21, 2025 11:20am - 11:40am CST
Regency F (2nd Floor)

11:40am CST

Wildlife Track: Movement ecology of an urban community in Forest Park, Saint Louis
Tuesday January 21, 2025 11:40am - 12:00pm CST
AUTHORS:  Stephen Blake, Department of Biology, Saint Louis University, Max Planck Institute of Animal Behavior, WildCare Institute, Saint Louis Zoo.

Sharon L. Deem, Institute for Conservation Medicine, Saint Louis Zoo.

Jamie Palmer, Institute for Conservation Medicine, Saint Louis Zoo.

Jeff Meshach, World Bird Sanctuary.

Stanton Braude, Department of Biology, Washington University in St. Louis.

Amy Witt, Forest Park Forever.

August Wise, Saint Louis University.

Anthony I. Dell, National Great Rivers Research and Education Center.

Stella F. Uiterwaal, Living Earth Collaborative, Washington University in St. Louis, Department of Biology, Saint Louis University, Institute for Conservation Medicine, Saint Louis Zoo, National Great Rivers Research and Education Center.


ABSTRACT:  Catastrophic native ecosystem degradation is usually a consequence of urban expansion. However, urban areas can support some elements of native biodiversity with benefits for conservation and human health. Understanding the ecology of urban biodiversity is increasingly important in a rapidly urbanizing world. Species responses to urbanization vary enormously from rapid local extinction to population expansion, with responses often strongly correlated with life history traits. Among animals, “urban adapters” often have r selected traits, such as small body size, high fecundity, and generalist niches. Long lived, large-bodied organisms with low fecundity tend to experience population declines and high local extinction probability under urbanization. Mobility can govern animals’ ability to exploit high-quality habitats and disperse out of poor-quality habitats. City parks are often mosaics of intense human use and semi-natural areas. They can function as urban biodiversity hotspots, which provides opportunities to understand the movement ecology of animals within urban communities. Over the last three years, we have fitted GPS and radio tracking tags to individuals from 15 species of animals in Forest Park, St. Louis. Additionally, we have acquired human mobility data from anonymous smart phone tracking within the park. We mapped habitat characteristics including vegetation and human footprint metrics across the city. We characterized animal movement strategies and habitat use using net squared displacement and resource selection functions. Forest Park wildlife displays all major movement strategies including residence, dispersal, nomadism and migration. Species’ responses to the human footprint varied dramatically from strongly negative, mostly among low mobility terrestrial omnivores, to strongly positive among highly mobile terrestrial and avian predators. Mortality was high among these species. This first quantitative window into the movement ecology of an urban animal community provokes myriad research and management questions and implications, demanding more extensive applied research to influence urban planning policy.
Speakers
SB

Stephen Blake

Assistant Professor, Biology Department, Saint Louis University
Tuesday January 21, 2025 11:40am - 12:00pm CST
Regency F (2nd Floor)

1:20pm CST

Wildlife Track: Multi-Method Occupancy of Semi-Aquatic Mammals in Southern Illinois
Tuesday January 21, 2025 1:20pm - 1:40pm CST
AUTHORS:  Derek Whipkey, Cooperative Wildlife Research Lab, Southern Illinois University; Charlotte Narr, Department of Zoology, Southern Illinois University; Brent Pease, School of Forestry and Horticulture, Southern Illinois University; Guillaume Bastille-Rousseau, Cooperative Wildlife Research Lab, Southern Illinois University

ABSTRACT:  Semi-aquatic mammals play important roles in aquatic ecosystems, particularly in the transfer of nutrients between aquatic and terrestrial environments. However, detecting and estimating the occurrence of these species can be difficult due to their elusive nature. Additionally, most occupancy studies have focused on a single type of waterbody (e.g. lentic or lotic systems), limiting a broader understanding of factors impacting these species distribution. To estimate occupancy of semi-aquatic mammals, we surveyed 67 sites across four counties in southern Illinois from March – May 2023 for American beaver (Castor canadensis), muskrat (Ondatra zibethicus), river otter (Lontra canadensis), and American mink (Neovison vison). Sites were distributed evenly between waterbody type and size. Given the elusive nature of these species, we combined two detection methods, sign surveys and camera traps, to increase detection. We applied a Bayesian multi-method occupancy model that incorporates both detection methods to estimate a single occupancy probability for each target species. To evaluate the relative importance of aquatic and terrestrial factors on occupancy, we built candidate models of aquatic and terrestrial covariates separately to identify the top model of each category. Aquatic covariates were consistently more important in predicting occupancy for all species. However, a combined additive model of the top aquatic and terrestrial models provided the best overall predictions. Beaver, otter, and mink occupancy showed positive associations with large waterbodies, while muskrat occupancy was positively linked to lotic systems. Additionally, muskrat and mink occupancy were positively related to increasing distance from roads. Our results suggest that while aquatic structure is more influential for predicting semi-aquatic mammal occupancy, considering both aquatic and terrestrial factors yields the most accurate results. All four semi-aquatic mammal species we studied were impacted by aquatic type, highlighting the importance of considering both waterbody types to better understand their distribution.
Speakers
DW

Derek Whipkey

Graduate Research Assistant, Southern Illinois University
Tuesday January 21, 2025 1:20pm - 1:40pm CST
Regency F (2nd Floor)

1:20pm CST

Wildlife Track: Quantifying the biodiversity benefit of forest cover in agricultural landscapes using environmental DNA metabarcoding
Tuesday January 21, 2025 1:20pm - 1:40pm CST
AUTHORS: Olivia P. Reves, Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Mark A. Davis, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA; Eric R. Larson, Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA



ABSTRACT: The conversion of natural ecosystems to agriculture is a leading cause of habitat loss and threatens global biodiversity. For the past two centuries, the midwestern United States has experienced agricultural intensification and expansion, resulting in losses of natural ecosystems including tallgrass prairies, wetlands, and forests. Forest cover in states like Illinois has increased over the last several decades, partially due to agricultural conservation efforts like agroforestry, the Conservation Reserve Enhancement Program, and implementation of riparian buffers. However, does this increasing forest cover, intended to reduce nutrient and soil loss and benefit in-stream biota, also have benefits to terrestrial biodiversity? We used environmental DNA (eDNA), DNA collected and isolated from environmental samples, to evaluate how forest cover influences and potentially benefits terrestrial and semi-aquatic vertebrates in agricultural landscapes. In May and June of 2024, we collected eDNA samples from 47 low order streams over gradients of both riparian and whole-watershed forest cover from the U.S. National Land Cover Database. We then conducted eDNA metabarcoding of vertebrate communities using 12S and COI primers. Next, we used generalized linear mixed models to examine effects of forest cover on species richness, as well as non-metric multidimensional scaling to explore differences in community composition between sites of varying forest cover. Evaluating how terrestrial vertebrate communities respond to forest cover can shape management practices from riparian buffers to watershed-wide scales across agricultural regions.
Speakers
avatar for Olivia Reves

Olivia Reves

Master's Student, University of Illinois - Natural Resources and Environmental Sciences
Tuesday January 21, 2025 1:20pm - 1:40pm CST
Sterling 9 (2nd Floor )

1:40pm CST

Wildlife Track: An assessment of small mammal monitoring methods within restored prairies in Illinois
Tuesday January 21, 2025 1:40pm - 2:00pm CST
AUTHORS:  Bianca Saftoiu, University of Illinois Urbana-Champaign; Dr. Mark Johnson, US Army Construction Engineering Research Laboratory; Patrick Wolff, US Army Construction Engineering Research Laboratory; Dr. Jinelle Sperry, University of Illinois Urbana-Champaign and US Army Construction Engineering Research Laboratory

ABSTRACT:  Tall-grass prairies are among the most threatened ecosystems in North America with less than 0.01% remaining in the state of Illinois. Effective prairie restoration in the Midwest is thus essential and requires that the health of the ecosystem be managed by re-establishing functional ecological communities, including prairie-associated wildlife species. Small mammals serve as an effective taxonomic group to monitor given their importance to ecological functioning across trophic levels and their sensitivity to habitat disturbance. Various passive and invasive survey methods have been used to evaluate mammalian species because of challenges associated with varying body size, temporal activity patterns, and cryptic behaviors. In this study we compare three distinct methods including live trapping, bucket camera traps, and airborne environmental DNA (eDNA) sampling for monitoring small mammal communities in restored prairies. In 2023 we surveyed ten prairie sites in Illinois and found that live trapping allowed for more specific identification to the species level while bucket cameras generally detected a greater species richness. We were also able to detect vertebrate DNA within the ten prairies using eDNA methods, however, the quantity of DNA varied across sites. Based upon these preliminary results, we can infer that a combination of both traditional and modern methods will offer a more comprehensive assessment of small mammal community composition within restored prairies.
Speakers
BS

Bianca Saftoiu

Graduate Research Assistant, University of Illinois Urbana-Champaign
Tuesday January 21, 2025 1:40pm - 2:00pm CST
Sterling 9 (2nd Floor )

1:40pm CST

Wildlife Track: Inter-specific differences in waterfowl responses to hunting pressure and environmental conditions at an autumn stopover
Tuesday January 21, 2025 1:40pm - 2:00pm CST
AUTHORS:  Abigail G Blake-Bradshaw, Forbes Biological Station; Therin M Bradshaw, Forbes Biological Station; Andrew D Gilbert, Forbes Biological Station; Joshua M Osborn, Forbes Biological Station; Elizabeth A Beilke, Forbes Biological Station; Chelsea S Kross, US Fish & Wildlife Service; Auriel MV Fournier, Forbes Biological Station

ABSTRACT:  Hunting pressure and associated disturbance influences many aspects of wildlife behavior. Disturbance by hunters influences the timing of relocation movements of waterfowl and could drive departures from stopover locations during autumn. Additionally, environmental conditions, including short-term changes in weather or habitat availability, may necessitate shifts in activity patterns, alter departure decisions, or impact individual susceptibility to harvest. Thus, wildlife professionals are interested in understanding what drives autumn-winter movements and migration events of waterfowl; therefore, we evaluated the extent to which hunting pressure and environmental conditions influenced daily flights and departure from an autumn stopover location. Our study took place in of the La Grange Reach of the Illinois River Valley, IL, USA. To evaluate the influence of “hunting pressure” on waterfowl behavior and departure from a stopover location, we placed 20 Autonomous Recording Units (ARUs) across our study area to quantify daily shotgun volleys. We then captured 38 mallards (Anas platyrhynchos) and 26 green-winged teal (A. crecca; hereafter teal) at Chautauqua National Wildlife Refuge, IL, USA. We deployed GPS-GSM transmitters on both age (i.e., juveniles and adults) and sex classes (i.e., males and females) and tracked both species during autumn and winter 2022–2024. We quantified the number of daily local-scale flights and related it to local environmental conditions and hunting pressure as indexed by ARUs. The median number of local-scale flights was 3 (range: 0–18) and was similar between species. Additionally, we identified the day individuals departed the Illinois River Valley stopover area by quantifying when they passed 40°N southwards, which marked the southern extent of our study area. In total, 24 teal and 8 mallards departed the study area, and as hunting pressure increased, teal were more likely to depart southwards. Preliminary results indicate mallards and teal responded to environmental conditions and hunting pressure disparately.
Speakers
avatar for Abigail Blake-Bradshaw

Abigail Blake-Bradshaw

Post Doc, Forbes Biological Station; Illinois Natural History Survey
Tuesday January 21, 2025 1:40pm - 2:00pm CST
Regency F (2nd Floor)

2:00pm CST

Wildlife Track: Surfing the Blue Wave: Is blue-winged teal resource selection influenced by fine-scale variation in wetland availability?
Tuesday January 21, 2025 2:00pm - 2:20pm CST
AUTHORS:  Jeffrey Edwards, Missouri Cooperative Fish & Wildlife Research Unit, School of Natural Resources, University of Missouri; Dr. Lisa Webb, U.S. Geological Survey, Missouri Cooperative Fish & Wildlife Research Unit; Dr. Drew Fowler, U.S. Geological Survey, Louisiana Cooperative Fish & Wildlife Research Unit; Paul Link, Louisiana Department of Wildlife & Fisheries; Dr. Chris Nicolai, Delta Waterfowl

ABSTRACT:  Migration is an important life history strategy that many waterbirds employ to exploit seasonally available resources and maximize fitness. However, migratory events are energetically demanding, and waterbirds use stopover sites during migration to rebuild energetic reserves. During spring migration, habitat quality at available stopover sites has the potential to exert cross-seasonal effects on breeding season population demographics. Wetland availability during the migratory period can be temporally dynamic within and across years as well as spatially variable throughout the migration corridor. Only recently has quantifying the spatial and temporal extent of available wetlands at broad scales become possible with remote sensing technologies. However, little is known about how temporally and spatially dynamic wetland availability may influence waterfowl resource selection during the non-breeding season. In this study, we collected movement data from 350 blue-winged teal (Spatula discors) marked with GPS-GSM transmitters to assess the effects of inundated wetland availability on blue-winged teal resource selection during the autumn and spring migrations (2019 – 2024). We used the Dynamic World dataset to quantify temporally and spatially dynamic inundated wetlands and intersected this data layer with landcover types from the National Land Cover Database. Combining these data sources, we will use an integrated step selection function to evaluate how blue-winged teal resource selection varies with inundated wetland availability at two-week intervals. The spatial extent of each two-week interval will be based on sample wide kernel density estimates of use. Results from this study can help inform wetland conservation and management practices for early autumn and late spring migrating waterbirds such as blue-winged teal. Specifically, these results can inform how early autumn wetland inundation and maintaining water into spring may support waterbirds whose life history strategies include this migration phenology.
Speakers
JE

Jeffrey Edwards

Graduate Research Assistant, Missouri Cooperative Fish & Wildlife Research Unit
Tuesday January 21, 2025 2:00pm - 2:20pm CST
Regency F (2nd Floor)

2:00pm CST

Wildlife Track: Use of thermal-imaging drones to assess assumptions of density estimation techniques
Tuesday January 21, 2025 2:00pm - 2:20pm CST
AUTHORS:  David Delaney, Iowa State University
Tyler Harms, Iowa Department of Natural Resources
Stephen Dinsmore, Iowa State University


ABSTRACT:  Techniques to estimate density of unmarked animals are logistically feasible and allow sampling over greater spatial extents than more intensive methods, such as mark-recapture. However, accuracy of density estimates relies on the validity of assumptions about the study system. We conducted a thermal-imaging drone survey at night to test the validity of two assumptions for conducting distance sampling on white-tailed deer (Odocoileus virginianus) in Iowa via nocturnal spotlight surveys. First, we tested whether deer are randomly distributed with respect to gravel roads, which represent line transects in our study. Second, we quantified the portion of the population that occurs in unsampleable locations (i.e., within forest) to estimate availability bias. Preliminary analyses suggest deer do not avoid gravel roads but do responsively move away from observers prior to being detected, leading to potential bias in estimates of detection probability and density. Secondly, deer increased the use of forest cover as spring vegetation green-up occurred, leading to up to 50% of the population being unavailable to sample during surveys. Each of these deviations from conventional distance sampling assumptions inform future sampling design protocols and can be analytically corrected, once quantified, to reduce bias in density estimates.

Speakers
DD

David Delaney

post-doc, Iowa State University
Tuesday January 21, 2025 2:00pm - 2:20pm CST
Sterling 9 (2nd Floor )

2:20pm CST

Wildlife Track: Wetland Management and Habitat Associations of Breeding Secretive Marsh Birds, including King Rail, in Missouri
Tuesday January 21, 2025 2:20pm - 2:40pm CST
AUTHORS:  Presenter: Ryan McGinty (SUNY Brockport, Brockport, NY)

Co-Authors: Kristen Malone (SUNY Brockport, Brockport, NY), Lisa Webb (USGS, Columbia, MO), Arianne Messerman (Missouri Department of Conservation, Columbia, MO), Janet Haslerig (Missouri Department of Conservation, Jefferson City, MO), and Doreen Mengel (University of Missouri, Columbia, MO)


ABSTRACT:  Several species of secretive Marsh are facing population declines in the U.S., including the King Rail which is listed as endangered in several U.S. states. Wetland management practices commonly used on public properties in Missouri and elsewhere have been developed to produce vegetation and water conditions that benefit waterfowl. However, the effects of waterfowl-focused wetland management on secretive marsh birds are not well known. The purpose of this project is to determine the current distribution of King Rail in Missouri and to evaluate the effects of habitat characteristics and wetland management practices on breeding secretive marsh birds. In 2023, we conducted call-playback surveys at 84 survey points across 14 publicly managed properties in Missouri. We detected King Rail at 4 survey points across 3 wetland pools. Two of these wetland pools were permanently inundated with water and the other as drawn down in the month of May. Due to few detections of King Rail, we used Least Bittern as a surrogate in occupancy analyses. We detected Least Bittern at 18 survey points. Their site occupancy was positively associated with percent cover of both tall emergent vegetation (β = 4.616, 85% CI = 1.901 – 7.931), percent cover of water (3.696, 1.596 – 6.496), and water depth (2.329, 0.449 – 4.720). Points with greater interspersion were more likely to be occupied by Least Bittern (4.496, 0.852 – 10.088). Wetland pools that were drawn down annually were less likely to be occupied by Least Bittern than sites that were permanently inundated with water (-7.117, -13.886 – -1.551). Least Bittern occupancy was also positively associated with a later initiation of spring drawdowns (6.555, 2.457 – 12.645). Our results represent an important first step for moving forward King Rail conservation in Missouri and for testing the assumption that waterfowl habitat management produces habitat for secretive marsh birds.
Speakers
RM

Ryan McGinty

M.S. Student, SUNY Brockport
Tuesday January 21, 2025 2:20pm - 2:40pm CST
Regency F (2nd Floor)

2:40pm CST

Wildlife Track: River-Floodplain Connectivity: Effects on Ecological Communities in Restored Wetlands along the Lower Missouri River
Tuesday January 21, 2025 2:40pm - 3:00pm CST
AUTHORS:  Josh Williams, Missouri Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA; Lisa Webb, U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA; Jonathan Spurgeon, U.S. Geological Survey, Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

ABSTRACT:  During the 20th century, extensive flood control infrastructure was built along many US rivers, separating mainstem river channels from floodplains and altering floodplain wetland structure and function. Wetland restoration often occurs in locations where levees have disconnected the floodplain from the mainstem river channel. Disconnected wetlands can experience reduced nutrient exchange, habitat heterogeneity, biodiversity, and hazard mitigation compared to wetlands in connected floodplains. Understanding the effects of river-floodplain connectivity on wetland restoration efforts has been limited—in part—by brief time periods between restoration and evaluation. The Agricultural Conservation Easement Program – Wetland Reserve Easements (ACEP-WRE) program, established in 1990, is a voluntary program that provides landowners with technical assistance and financial incentives to restore marginal farmland to historic wetland conditions. Our objective is to compare abiotic and biotic metrics in ACEP-WRE wetlands along a gradient of restoration age (6 to 29 years) and degree of connectivity between the Missouri River and the adjacent floodplain. Hydrological connectivity was categorized based on wetland proximity to an adjacent levee system (landward or riverward) and quantified using continuous temperature logging units, level of local mainstem channel incision, and historical river stage data. At each ACEP-WRE site (riverward sites n = 26, landward sites n = 24), water, soil, and algae samples were collected along with surveys of vegetation, macroinvertebrate, fish, amphibian, and bird assemblages. We compare metrics for riverward and landward sites with six reference and six control sites to elucidate whether river-floodplain connectivity affects the time needed to achieve ACEP-WRE restoration goals.
Speakers
JW

Josh Williams

Graduate Research Assistant, University of Missouri
Tuesday January 21, 2025 2:40pm - 3:00pm CST
Regency F (2nd Floor)
 

Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
Filtered by Date - 
  • Coffee Break
  • Committee Meeting
  • Featured Event
  • For Speakers
  • General Fisheries
  • General Wildlife
  • Meal/Social Event
  • Poster Session
  • Pre-Conference Workshop
  • S-01: Flight of Discovery: Bird Research & Monitoring within the Mississippi Flyway
  • S-02: Connecting the Dots: Addressing Aquatic Habitat Fragmentation Across the Midwest
  • S-03: CWD: A Wicked Challenge
  • S-04: Building Resilient Salmonid Populations with Multi-faceted Management and Research Approaches (PART 1)
  • S-04: Building Resilient Salmonid Populations with Multi-faceted Management and Research Approaches (PART 2)
  • S-05: Working Lands & Resilient Streams: The Power of Partnering with Landowners
  • S-06: Restoring and Reconstructing Endangered Ecosystems in Missouri: Case Studies of Prairie/Savanna/Woodland and Wetland Natural Communities
  • S-07: Sharing Knowledge Across Sub-basins: Invasive Carp in the Missouri River Basin and Beyond
  • S-07: Sharing Knowledge Across Sub-basins: Invasive Carp in the Missouri River Basin and Beyond (PART 1
  • S-08: Conservation of Crawfish Frogs and Other Amphibians and Reptiles of the Midwest
  • S-09: Conservation Social Science: Informing Management and Enhancing Engagement in the Midwest
  • S-10: Charting a Path Forward - Fisheries and Aquatic Plant Management Now and in the Future
  • S-11: Crayfish Conservation and Management
  • S-12: Not Just for Ducks…Reframing Marshes as Working Water Gardens
  • S-13: Living Data on the Road to Resilience: Opportunities/Challenges/Best Practices
  • S-14: Thriving Amidst Challenges: Examining Resilient Walleye Populations
  • S-15: The Sustainable Rivers Program - Reoperating Corps of Engineers Water Infrastructure to Enhance Environmental Benefits
  • S-16: Migratory Birds and Climate Change: Science to Inform Management
  • S-17: Applied Science and Adaptation of R3 Efforts
  • S-18: FishCAST: Working Towards a Better Future for All Fisheries Professionals
  • S-19: How is Landscape Conservation Relevant to You?
  • Student Event