AUTHORS: Abby Yake, Ball State University; Leah Sodo, Ball State University; Jessica Ward, Ball State University
ABSTRACT: The ability of developing embryos to detect and learn to recognize external environmental cues is adaptive because it can improve survival after hatching. Previous research has shown that embryonic fish can detect and respond to predation cues of conspecific adults and learn to identify a potential predator via association with these alarm cues. However, it is not known whether embryos can similarly recognize and respond to cues indicative of attacks on eggs. In this study, we examined the responses of embryonic and larval fathead minnows, Pimephales promelas, exposed to various predation cues during the egg phase. Embryos were exposed to predator cue, egg alarm cue, a combination of predator and alarm cue (PAC), or control water for 5 days post fertilization (dpf). Activity levels of 5 dpf embryos were then tested in response to predator cue alone. After hatching, larvae were reared to 21 dpf and tested in two types of behavioral assays, open field and refugium trials, to assess perception of risk. We hypothesized that embryos would be able to recognize and respond to egg alarm cues and make the same associations of predation risk as previously shown with adult alarm cues.